Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes.
Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application.
Pour en savoir plus, consultez la page Configurer l'authentification pour un environnement de développement local.
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.BatchDedicatedResources;
import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputInfo;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.CompletionStats;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.ManualBatchTuningParameters;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.ResourcesConsumed;
import com.google.cloud.aiplatform.v1.schema.predict.params.VideoObjectTrackingPredictionParams;
import com.google.protobuf.Any;
import com.google.protobuf.Value;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.List;
public class CreateBatchPredictionJobVideoObjectTrackingSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String batchPredictionDisplayName = "YOUR_VIDEO_OBJECT_TRACKING_DISPLAY_NAME";
String modelId = "YOUR_MODEL_ID";
String gcsSourceUri =
"gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_video_source/[file.csv/file.jsonl]";
String gcsDestinationOutputUriPrefix =
"gs://YOUR_GCS_SOURCE_BUCKET/destination_output_uri_prefix/";
String project = "YOUR_PROJECT_ID";
batchPredictionJobVideoObjectTracking(
batchPredictionDisplayName, modelId, gcsSourceUri, gcsDestinationOutputUriPrefix, project);
}
static void batchPredictionJobVideoObjectTracking(
String batchPredictionDisplayName,
String modelId,
String gcsSourceUri,
String gcsDestinationOutputUriPrefix,
String project)
throws IOException {
JobServiceSettings jobServiceSettings =
JobServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
String location = "us-central1";
LocationName locationName = LocationName.of(project, location);
ModelName modelName = ModelName.of(project, location, modelId);
VideoObjectTrackingPredictionParams modelParamsObj =
VideoObjectTrackingPredictionParams.newBuilder()
.setConfidenceThreshold(((float) 0.5))
.build();
Value modelParameters = ValueConverter.toValue(modelParamsObj);
GcsSource.Builder gcsSource = GcsSource.newBuilder();
gcsSource.addUris(gcsSourceUri);
InputConfig inputConfig =
InputConfig.newBuilder().setInstancesFormat("jsonl").setGcsSource(gcsSource).build();
GcsDestination gcsDestination =
GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
OutputConfig outputConfig =
OutputConfig.newBuilder()
.setPredictionsFormat("jsonl")
.setGcsDestination(gcsDestination)
.build();
BatchPredictionJob batchPredictionJob =
BatchPredictionJob.newBuilder()
.setDisplayName(batchPredictionDisplayName)
.setModel(modelName.toString())
.setModelParameters(modelParameters)
.setInputConfig(inputConfig)
.setOutputConfig(outputConfig)
.build();
BatchPredictionJob batchPredictionJobResponse =
jobServiceClient.createBatchPredictionJob(locationName, batchPredictionJob);
System.out.println("Create Batch Prediction Job Video Object Tracking Response");
System.out.format("\tName: %s\n", batchPredictionJobResponse.getName());
System.out.format("\tDisplay Name: %s\n", batchPredictionJobResponse.getDisplayName());
System.out.format("\tModel %s\n", batchPredictionJobResponse.getModel());
System.out.format(
"\tModel Parameters: %s\n", batchPredictionJobResponse.getModelParameters());
System.out.format("\tState: %s\n", batchPredictionJobResponse.getState());
System.out.format("\tCreate Time: %s\n", batchPredictionJobResponse.getCreateTime());
System.out.format("\tStart Time: %s\n", batchPredictionJobResponse.getStartTime());
System.out.format("\tEnd Time: %s\n", batchPredictionJobResponse.getEndTime());
System.out.format("\tUpdate Time: %s\n", batchPredictionJobResponse.getUpdateTime());
System.out.format("\tLabels: %s\n", batchPredictionJobResponse.getLabelsMap());
InputConfig inputConfigResponse = batchPredictionJobResponse.getInputConfig();
System.out.println("\tInput Config");
System.out.format("\t\tInstances Format: %s\n", inputConfigResponse.getInstancesFormat());
GcsSource gcsSourceResponse = inputConfigResponse.getGcsSource();
System.out.println("\t\tGcs Source");
System.out.format("\t\t\tUris %s\n", gcsSourceResponse.getUrisList());
BigQuerySource bigQuerySource = inputConfigResponse.getBigquerySource();
System.out.println("\t\tBigquery Source");
System.out.format("\t\t\tInput_uri: %s\n", bigQuerySource.getInputUri());
OutputConfig outputConfigResponse = batchPredictionJobResponse.getOutputConfig();
System.out.println("\tOutput Config");
System.out.format(
"\t\tPredictions Format: %s\n", outputConfigResponse.getPredictionsFormat());
GcsDestination gcsDestinationResponse = outputConfigResponse.getGcsDestination();
System.out.println("\t\tGcs Destination");
System.out.format(
"\t\t\tOutput Uri Prefix: %s\n", gcsDestinationResponse.getOutputUriPrefix());
BigQueryDestination bigQueryDestination = outputConfigResponse.getBigqueryDestination();
System.out.println("\t\tBig Query Destination");
System.out.format("\t\t\tOutput Uri: %s\n", bigQueryDestination.getOutputUri());
BatchDedicatedResources batchDedicatedResources =
batchPredictionJobResponse.getDedicatedResources();
System.out.println("\tBatch Dedicated Resources");
System.out.format(
"\t\tStarting Replica Count: %s\n", batchDedicatedResources.getStartingReplicaCount());
System.out.format(
"\t\tMax Replica Count: %s\n", batchDedicatedResources.getMaxReplicaCount());
MachineSpec machineSpec = batchDedicatedResources.getMachineSpec();
System.out.println("\t\tMachine Spec");
System.out.format("\t\t\tMachine Type: %s\n", machineSpec.getMachineType());
System.out.format("\t\t\tAccelerator Type: %s\n", machineSpec.getAcceleratorType());
System.out.format("\t\t\tAccelerator Count: %s\n", machineSpec.getAcceleratorCount());
ManualBatchTuningParameters manualBatchTuningParameters =
batchPredictionJobResponse.getManualBatchTuningParameters();
System.out.println("\tManual Batch Tuning Parameters");
System.out.format("\t\tBatch Size: %s\n", manualBatchTuningParameters.getBatchSize());
OutputInfo outputInfo = batchPredictionJobResponse.getOutputInfo();
System.out.println("\tOutput Info");
System.out.format("\t\tGcs Output Directory: %s\n", outputInfo.getGcsOutputDirectory());
System.out.format("\t\tBigquery Output Dataset: %s\n", outputInfo.getBigqueryOutputDataset());
Status status = batchPredictionJobResponse.getError();
System.out.println("\tError");
System.out.format("\t\tCode: %s\n", status.getCode());
System.out.format("\t\tMessage: %s\n", status.getMessage());
List<Any> details = status.getDetailsList();
for (Status partialFailure : batchPredictionJobResponse.getPartialFailuresList()) {
System.out.println("\tPartial Failure");
System.out.format("\t\tCode: %s\n", partialFailure.getCode());
System.out.format("\t\tMessage: %s\n", partialFailure.getMessage());
List<Any> partialFailureDetailsList = partialFailure.getDetailsList();
}
ResourcesConsumed resourcesConsumed = batchPredictionJobResponse.getResourcesConsumed();
System.out.println("\tResources Consumed");
System.out.format("\t\tReplica Hours: %s\n", resourcesConsumed.getReplicaHours());
CompletionStats completionStats = batchPredictionJobResponse.getCompletionStats();
System.out.println("\tCompletion Stats");
System.out.format("\t\tSuccessful Count: %s\n", completionStats.getSuccessfulCount());
System.out.format("\t\tFailed Count: %s\n", completionStats.getFailedCount());
System.out.format("\t\tIncomplete Count: %s\n", completionStats.getIncompleteCount());
}
}
}