predict メソッドを使用して、表形式分類の予測を取得します。
もっと見る
このコードサンプルを含む詳細なドキュメントについては、以下をご覧ください。
コードサンプル
Java
Vertex AI 用のクライアント ライブラリをインストールして使用する方法については、Vertex AI クライアント ライブラリをご覧ください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.TabularClassificationPredictionResult;
import com.google.protobuf.ListValue;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.List;
public class PredictTabularClassificationSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String instance = "[{ “feature_column_a”: “value”, “feature_column_b”: “value”}]";
String endpointId = "YOUR_ENDPOINT_ID";
predictTabularClassification(instance, project, endpointId);
}
static void predictTabularClassification(String instance, String project, String endpointId)
throws IOException {
PredictionServiceSettings predictionServiceSettings =
PredictionServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PredictionServiceClient predictionServiceClient =
PredictionServiceClient.create(predictionServiceSettings)) {
String location = "us-central1";
EndpointName endpointName = EndpointName.of(project, location, endpointId);
ListValue.Builder listValue = ListValue.newBuilder();
JsonFormat.parser().merge(instance, listValue);
List<Value> instanceList = listValue.getValuesList();
Value parameters = Value.newBuilder().setListValue(listValue).build();
PredictResponse predictResponse =
predictionServiceClient.predict(endpointName, instanceList, parameters);
System.out.println("Predict Tabular Classification Response");
System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());
System.out.println("Predictions");
for (Value prediction : predictResponse.getPredictionsList()) {
TabularClassificationPredictionResult.Builder resultBuilder =
TabularClassificationPredictionResult.newBuilder();
TabularClassificationPredictionResult result =
(TabularClassificationPredictionResult)
ValueConverter.fromValue(resultBuilder, prediction);
for (int i = 0; i < result.getClassesCount(); i++) {
System.out.printf("\tClass: %s", result.getClasses(i));
System.out.printf("\tScore: %f", result.getScores(i));
}
}
}
}
}
Node.js
Vertex AI 用のクライアント ライブラリをインストールして使用する方法については、Vertex AI クライアント ライブラリをご覧ください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const endpointId = 'YOUR_ENDPOINT_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {prediction} =
aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;
// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;
// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);
async function predictTablesClassification() {
// Configure the endpoint resource
const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
const parameters = helpers.toValue({});
const instance = helpers.toValue({
petal_length: '1.4',
petal_width: '1.3',
sepal_length: '5.1',
sepal_width: '2.8',
});
const instances = [instance];
const request = {
endpoint,
instances,
parameters,
};
// Predict request
const [response] = await predictionServiceClient.predict(request);
console.log('Predict tabular classification response');
console.log(`\tDeployed model id : ${response.deployedModelId}\n`);
const predictions = response.predictions;
console.log('Predictions :');
for (const predictionResultVal of predictions) {
const predictionResultObj =
prediction.TabularClassificationPredictionResult.fromValue(
predictionResultVal
);
for (const [i, class_] of predictionResultObj.classes.entries()) {
console.log(`\tClass: ${class_}`);
console.log(`\tScore: ${predictionResultObj.scores[i]}\n\n`);
}
}
}
predictTablesClassification();
Python
Vertex AI 用のクライアント ライブラリをインストールして使用する方法については、Vertex AI クライアント ライブラリをご覧ください。詳細については、Vertex AI Python API のリファレンス ドキュメントをご覧ください。
from typing import Dict
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
def predict_tabular_classification_sample(
project: str,
endpoint_id: str,
instance_dict: Dict,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
# for more info on the instance schema, please use get_model_sample.py
# and look at the yaml found in instance_schema_uri
instance = json_format.ParseDict(instance_dict, Value())
instances = [instance]
parameters_dict = {}
parameters = json_format.ParseDict(parameters_dict, Value())
endpoint = client.endpoint_path(
project=project, location=location, endpoint=endpoint_id
)
response = client.predict(
endpoint=endpoint, instances=instances, parameters=parameters
)
print("response")
print(" deployed_model_id:", response.deployed_model_id)
# See gs://google-cloud-aiplatform/schema/predict/prediction/tabular_classification_1.0.0.yaml for the format of the predictions.
predictions = response.predictions
for prediction in predictions:
print(" prediction:", dict(prediction))
次のステップ
他の Google Cloud プロダクトに関連するコードサンプルの検索およびフィルタ検索を行うには、Google Cloud のサンプルをご覧ください。