Men-deploy model pada Vertex AI dan mendapatkan prediksi

Setelah melatih model pada cluster Ray di Vertex AI, Anda dapat men-deploy model untuk permintaan prediksi online menggunakan proses berikut:

Sebelum memulai, pastikan untuk membaca ringkasan Ray on Vertex AI dan menyiapkan semua alat prasyarat yang Anda butuhkan.

Langkah-langkah di bagian ini mengasumsikan bahwa Anda menggunakan Ray di Vertex AI SDK dalam lingkungan Python interaktif.

Mengimpor dan melakukan inisialisasi klien Ray di Vertex AI

Jika Anda telah terhubung ke cluster Ray di Vertex AI, mulai ulang kernel dan jalankan kode berikut. Variabel runtime_env diperlukan pada waktu koneksi untuk menjalankan perintah prediksi online.

import ray
import vertexai

# The CLUSTER_RESOURCE_NAME is the one returned from vertex_ray.create_ray_cluster.
address = 'vertex_ray://{}'.format(CLUSTER_RESOURCE_NAME)

# Initialize Vertex AI to retrieve projects for downstream operations.
vertexai.init(staging_bucket=BUCKET_URI)

# Shutdown cluster and reconnect with required dependencies in the runtime_env.
ray.shutdown()

Dengan keterangan:

  • CLUSTER_RESOURCE_NAME: Nama resource lengkap untuk cluster Ray di Vertex AI yang harus unik di seluruh project Anda.

  • BUCKET_URI adalah bucket Cloud Storage untuk menyimpan artefak model.

Melatih dan mengekspor model ke Vertex AI Model Registry

Ekspor model Vertex AI dari checkpoint Ray dan upload model ke Vertex AI Model Registry.

TensorFlow

import numpy as np
from ray.air import session, CheckpointConfig, ScalingConfig
from ray.air.config import RunConfig
from ray.train import SyncConfig
from ray.train.tensorflow import TensorflowCheckpoint, TensorflowTrainer
from ray import train
import tensorflow as tf

from vertex_ray.predict import tensorflow

# Required dependencies at runtime
runtime_env = {
  "pip": [
      "ray==2.9.3", # pin the Ray version to prevent it from being overwritten
      "tensorflow",
      "IPython",
      "numpy",
  ],
}

# Initialize  Ray on Vertex AI client for remote cluster connection
ray.init(address=address, runtime_env=runtime_env)

# Define a TensorFlow model.

def create_model():
  model = tf.keras.Sequential([tf.keras.layers.Dense(1, activation="linear", input_shape=(4,))])
  model.compile(optimizer="Adam", loss="mean_squared_error", metrics=["mse"])
  return model

def train_func(config):
  n = 100
  # Create a fake dataset
  # data   : X - dim = (n, 4)
  # target : Y - dim = (n, 1)
  X = np.random.normal(0, 1, size=(n, 4))
  Y = np.random.uniform(0, 1, size=(n, 1))

  strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
  with strategy.scope():
      model = create_model()
      print(model)

  for epoch in range(config["num_epochs"]):
      model.fit(X, Y, batch_size=20)
      tf.saved_model.save(model, "temp/my_model")
      checkpoint = TensorflowCheckpoint.from_saved_model("temp/my_model")
      train.report({}, checkpoint=checkpoint)

trainer = TensorflowTrainer(
  train_func,
  train_loop_config={"num_epochs": 5},
  scaling_config=ScalingConfig(num_workers=1),
  run_config=RunConfig(
      storage_path=f'{BUCKET_URI}/ray_results/tensorflow',
      checkpoint_config=CheckpointConfig(
          num_to_keep=1  # Keep all checkpoints.
      ),
      sync_config=SyncConfig(
          sync_artifacts=True,
      ),
  ),
)

# Train the model.
result = trainer.fit()

# Register the trained model to Vertex AI Model Registry.
vertex_model = tensorflow.register_tensorflow(
  result.checkpoint,
)

sklearn

from vertex_ray.predict import sklearn
from ray.train.sklearn import SklearnCheckpoint

vertex_model = sklearn.register_sklearn(
  result.checkpoint,
)

XGBoost

from vertex_ray.predict import xgboost
from ray.train.xgboost import XGBoostTrainer

# Initialize  Ray on Vertex AI client for remote cluster connection
ray.init(address=address, runtime_env=runtime_env)

# Define a XGBoost model.
train_dataset = ray.data.from_pandas(
pd.DataFrame([{"x": x, "y": x + 1} for x in range(32)]))

run_config = RunConfig(
storage_path=f'{BUCKET_URI}/ray_results/xgboost',
checkpoint_config=CheckpointConfig(
    num_to_keep=1  # Keep all checkpoints. 
),
sync_config=SyncConfig(sync_artifacts=True),
)

trainer = XGBoostTrainer(
label_column="y",
params={"objective": "reg:squarederror"},
scaling_config=ScalingConfig(num_workers=3),
datasets={"train": train_dataset},
run_config=run_config,
)
# Train the model.
result = trainer.fit()

# Register the trained model to Vertex AI Model Registry.
vertex_model = xgboost.register_xgboost(
result.checkpoint,
)

PyTorch

  • Konversi checkpoint Ray menjadi model.

  • Bangun model.mar.

  • Membuat LocalModel menggunakan model.mar.

  • Mengupload ke Vertex AI Model Registry.

Men-deploy model untuk prediksi online

Deploy model ke endpoint online. Untuk mengetahui informasi selengkapnya, lihat Men-deploy model ke endpoint.

DEPLOYED_NAME = model.display_name + "-endpoint"
TRAFFIC_SPLIT = {"0": 100}
MACHINE_TYPE = "n1-standard-4"

endpoint = vertex_model.deploy(
    deployed_model_display_name=DEPLOYED_NAME,
    traffic_split=TRAFFIC_SPLIT,
    machine_type=MACHINE_TYPE,
)

Dengan keterangan:

  • (Opsional) DEPLOYED_NAME: Nama tampilan model yang di-deploy. Jika tidak disediakan saat pembuatan, display_name model akan digunakan.

  • (Opsional) TRAFFIC_SPLIT: Peta dari ID model yang di-deploy ke persentase traffic endpoint ini yang harus diteruskan ke model yang di-deploy tersebut. Jika ID model yang di-deploy tidak tercantum dalam peta ini, artinya model tersebut tidak akan menerima traffic. Jumlah nilai persentase lalu lintas harus bertambah hingga 100, atau peta harus kosong jika endpoint tidak menerima lalu lintas apa pun saat ini. Kunci untuk model yang di-deploy adalah "0". Misalnya, {"0": 100}.

  • (Opsional) MACHINE_TYPE: Tentukan resource komputasi.

Membuat permintaan prediksi

Kirim permintaan prediksi ke endpoint. Untuk mengetahui informasi selengkapnya, lihat Mendapatkan prediksi online dari model yang dilatih secara khusus.

pred_request = [
    [ 1.7076793 , 0.23412449, 0.95170785, -0.10901471],
    [-0.81881499, 0.43874669, -0.25108584, 1.75536031]
]

endpoint.predict(pred_request)

Anda akan mendapatkan output seperti berikut:

Prediction(predictions=[0.7891440987586975, 0.5843208432197571],
 deployed_model_id='3829557218101952512',
 model_version_id='1',
 model_resource_name='projects/123456789/locations/us-central1/models/123456789101112',
 explanations=None)

Langkah selanjutnya