Create a persistent resource

When you create a persistent resource, the training service first finds resources from the Compute Engine resource pool based on the specifications you provided, and then provisions a long-running cluster for you. This page shows you how to create a persistent resource for running your custom training jobs by using the Vertex AI API or the Google Cloud CLI.

Create a persistent resource

Select one of the following tabs for instructions on how to create a persistent resource.

gcloud

A persistent resource can have one or more resource pools. To create multiple resource pools in a persistent resource, specify multiple --resource-pool-spec flags.

Each resource pool can have autoscaling either enabled or disabled. To enable autoscaling, specify min_replica_count and max_replica_count.

You can specify all resource pool configurations as part of the command-line or use the --config flag to specify the path to a YAML file that contains the configurations.

Before using any of the command data below, make the following replacements:

  • PROJECT_ID: The Project ID of the Google Cloud project where you want to create the persistent resource.
  • LOCATION: The region where you want to create the persistent resource. For a list of supported regions, see Feature availability.
  • PERSISTENT_RESOURCE_ID: The ID of the persistent resource.
  • DISPLAY_NAME: (Optional) The display name of the persistent resource.
  • MACHINE_TYPE: The type of VM to use. For a list of supported VMs, see Machine types. This field corresponds to the machineSpec.machineType field in the ResourcePool API message.
  • ACCELERATOR_TYPE: (Optional) The type of GPU to attach to each VM in the resource pool. For a list of supported GPUs, see GPUs. This field corresponds to the machineSpec.acceleratorType field in the ResourcePool API message.
  • ACCELERATOR_COUNT: (Optional) The number of GPUs to attach to each VM in the resource pool. The default the value is 1. This field corresponds to the machineSpec.acceleratorCount field in ResourcePool API message.
  • REPLICA_COUNT: The number of replicas to create when creating this resource pool. This field corresponds to the replicaCount field in the ResourcePool API message. This field is required if you're not specifying MIN_REPLICA_COUNT and MAX_REPLICA_COUNT.
  • MIN_REPLICA_COUNT: (Optional) The minimum number of replicas that autoscaling can scale down to for this resource pool. Both MIN_REPLICA_COUNT and MAX_REPLICA_COUNT are required to enable autoscaling on this resource pool.
  • MAX_REPLICA_COUNT: (Optional) The maximum number of replicas that autoscaling can scale up to for this resource pool. Both MIN_REPLICA_COUNT and MAX_REPLICA_COUNT are required to enable autoscaling on this resource pool.
  • BOOT_DISK_TYPE: (Optional) The type of disk to use for as the boot disk of each VM in the resource pool. This field corresponds to the diskSpec.bootDiskType field in the ResourcePool API message. Acceptable values include the following:
    • pd-standard (default)
    • pd-ssd
  • BOOT_DISK_SIZE_GB: (Optional) The disk size in GiB for the boot disk of each VM in the resource pool. Acceptable values are 100 (default) to 64000. This field corresponds to the diskSpec.bootDiskSizeGb field in the ResourcePool API message.
  • CONFIG: Path to the persistent resource YAML configuration file. This file should contain a list of ResourcePool. If an option is specified in both the configuration file and the command-line arguments, the command-line arguments override the configuration file. Note that keys with underscores are invalid.

    Example YAML configuration file:

    resourcePoolSpecs:
      machineSpec:
        machineType: n1-standard-4
      replicaCount: 1
        

Execute the following command:

Linux, macOS, or Cloud Shell

gcloud beta ai persistent-resources create \
    --persistent-resource-id=PERSISTENT_RESOURCE_ID \
    --display-name=DISPLAY_NAME \
    --project=PROJECT_ID \
    --region=LOCATION \
    --resource-pool-spec="replica-count=REPLICA_COUNT,min-replica-count=MIN_REPLICA_COUNT,max-replica-count=MAX_REPLICA_COUNT,machine-type=MACHINE_TYPE,accelerator-type=ACCELERATOR_TYPE,accelerator-count=ACCELERATOR_COUNT,disk-type=BOOT_DISK_TYPE,disk-size=BOOT_DISK_SIZE_GB"

Windows (PowerShell)

gcloud beta ai persistent-resources create `
    --persistent-resource-id=PERSISTENT_RESOURCE_ID `
    --display-name=DISPLAY_NAME `
    --project=PROJECT_ID `
    --region=LOCATION `
    --resource-pool-spec="replica-count=REPLICA_COUNT,min-replica-count=MIN_REPLICA_COUNT,max-replica-count=MAX_REPLICA_COUNT,machine-type=MACHINE_TYPE,accelerator-type=ACCELERATOR_TYPE,accelerator-count=ACCELERATOR_COUNT,disk-type=BOOT_DISK_TYPE,disk-size=BOOT_DISK_SIZE_GB"

Windows (cmd.exe)

gcloud beta ai persistent-resources create ^
    --persistent-resource-id=PERSISTENT_RESOURCE_ID ^
    --display-name=DISPLAY_NAME ^
    --project=PROJECT_ID ^
    --region=LOCATION ^
    --resource-pool-spec="replica-count=REPLICA_COUNT,min-replica-count=MIN_REPLICA_COUNT,max-replica-count=MAX_REPLICA_COUNT,machine-type=MACHINE_TYPE,accelerator-type=ACCELERATOR_TYPE,accelerator-count=ACCELERATOR_COUNT,disk-type=BOOT_DISK_TYPE,disk-size=BOOT_DISK_SIZE_GB"

You should receive a response similar to the following:

Using endpoint [http://us-central1-aiplatform.googleapis.com/]
Operation to create PersistentResource [projects/123456789012/locations/us-central1/persistentResources/mypersistentresource/operations/1234567890123456789] is submitted successfully.

You may view the status of your PersistentResource create operation with the command

  $ gcloud beta ai operations describe projects/sample-project/locations/us-central1/operations/1234567890123456789

Example gcloud command:

gcloud beta ai persistent-resources create \
    --persistent-resource-id=my-persistent-resource \
    --region=us-central1 \
    --resource-pool-spec="min-replica-count=4,max-replica-count=12,machine-type=n1-highmem-2,accelerator-type=NVIDIA_TESLA_K80,accelerator-count=1,disk-type=pd-standard,disk-size=200" \
    --resource-pool-spec="replica-count=4,machine-type=n1-standard-4"

Advanced gcloud configurations

If you want to specify configuration options that are not available in the preceding examples, you can use the --config flag to specify the path to a config.yaml file in your local environment that contains the fields of persistentResources. For example:

gcloud beta ai persistent-resources create \
    --persistent-resource-id=PERSISTENT_RESOURCE_ID \
    --project=PROJECT_ID \
    --region=LOCATION \
    --config=CONFIG

REST

A persistent resource can have one or more resource pools (machine_spec), and each resource pool can have autoscaling either enabled or disabled.

Before using any of the request data, make the following replacements:

  • PROJECT_ID: The Project ID of the Google Cloud project where you want to create the persistent resource.
  • LOCATION: The region where you want to create the persistent resource. For a list of supported regions, see Feature availability.
  • PERSISTENT_RESOURCE_ID: The ID of the persistent resource.
  • DISPLAY_NAME: (Optional) The display name of the persistent resource.
  • MACHINE_TYPE: The type of VM to use. For a list of supported VMs, see Machine types. This field corresponds to the machineSpec.machineType field in the ResourcePool API message.
  • ACCELERATOR_TYPE: (Optional) The type of GPU to attach to each VM in the resource pool. For a list of supported GPUs, see GPUs. This field corresponds to the machineSpec.acceleratorType field in the ResourcePool API message.
  • ACCELERATOR_COUNT: (Optional) The number of GPUs to attach to each VM in the resource pool. The default the value is 1. This field corresponds to the machineSpec.acceleratorCount field in ResourcePool API message.
  • REPLICA_COUNT: The number of replicas to create when creating this resource pool. This field corresponds to the replicaCount field in the ResourcePool API message. This field is required if you're not specifying MIN_REPLICA_COUNT and MAX_REPLICA_COUNT.
  • MIN_REPLICA_COUNT: (Optional) The minimum number of replicas that autoscaling can scale down to for this resource pool. Both MIN_REPLICA_COUNT and MAX_REPLICA_COUNT are required to enable autoscaling on this resource pool.
  • MAX_REPLICA_COUNT: (Optional) The maximum number of replicas that autoscaling can scale up to for this resource pool. Both MIN_REPLICA_COUNT and MAX_REPLICA_COUNT are required to enable autoscaling on this resource pool.
  • BOOT_DISK_TYPE: (Optional) The type of disk to use for as the boot disk of each VM in the resource pool. This field corresponds to the diskSpec.bootDiskType field in the ResourcePool API message. Acceptable values include the following:
    • pd-standard (default)
    • pd-ssd
  • BOOT_DISK_SIZE_GB: (Optional) The disk size in GiB for the boot disk of each VM in the resource pool. Acceptable values are 100 (default) to 64000. This field corresponds to the diskSpec.bootDiskSizeGb field in the ResourcePool API message.

HTTP method and URL:

POST http://us-central1-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/persistentResources?persistent_resource_id=PERSISTENT_RESOURCE_ID

Request JSON body:

{
  "display_name": "DISPLAY_NAME",
  "resource_pools": [
    {
      "machine_spec": {
        "machine_type": "MACHINE_TYPE",
        "accelerator_type": "ACCELERATOR_TYPE",
        "accelerator_count": ACCELERATOR_COUNT
      },
      "replica_count": REPLICA_COUNT,
      "autoscaling_spec": {
        "min_replica_count": MIN_REPLICA_COUNT,
        "max_replica_count": MAX_REPLICA_COUNT
      },
      "disk_spec": {
        "boot_disk_type": "BOOT_DISK_TYPE",
        "boot_disk_size_gb": BOOT_DISK_SIZE_GB
      }
    }
  ]
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "name": "projects/123456789012/locations/us-central1/persistentResources/mypersistentresource/operations/1234567890123456789",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1beta1.CreatePersistentResourceOperationMetadata",
    "genericMetadata": {
      "createTime": "2023-02-08T21:17:15.009668Z",
      "updateTime": "2023-02-08T21:17:15.009668Z"
    }
  }
}

Resource stockout

There could be stockout for scarce resources like A100 GPUs, which can lead to persistent resource creation failure when no resource is available in the region you specified. In this case, you can try to reduce the number of replicas, change to different accelerator type, or try again during non-peak hours.

What's next