Addestra un modello AutoML Edge utilizzando l'API Vertex AI

Puoi creare un modello AutoML direttamente nella console Google Cloud oppure creando una pipeline di addestramento in modo programmatico, utilizzando l'API o una delle librerie client di Vertex AI.

Questo modello viene creato utilizzando un set di dati preparato fornito da te utilizzando la console o l'API. L'API Vertex AI utilizza gli elementi del set di dati per addestrare il modello, testarlo e valutarne le prestazioni. Esamina i risultati delle valutazioni, modifica il set di dati di addestramento in base alle esigenze e crea una nuova pipeline di addestramento utilizzando il set di dati migliorato.

Il completamento dell'addestramento del modello può richiedere diverse ore. L'API Vertex AI consente di ottenere lo stato dell'addestramento.

Crea una pipeline di addestramento AutoML Edge

Quando hai un set di dati con un insieme rappresentativo di elementi di addestramento, puoi creare una pipeline di addestramento AutoML Edge.

Seleziona un tipo di dati.

Immagine

Seleziona la scheda di seguito per il tuo obiettivo:

Classificazione

In fase di addestramento, puoi scegliere il tipo di modello AutoML Edge che preferisci, a seconda del caso d'uso specifico:

  • bassa latenza (MOBILE_TF_LOW_LATENCY_1)
  • utilizzo per uso generico (MOBILE_TF_VERSATILE_1)
  • qualità della previsione superiore (MOBILE_TF_HIGH_ACCURACY_1)

Seleziona la scheda riportata di seguito per la tua lingua o il tuo ambiente:

REST

Prima di utilizzare qualsiasi dato della richiesta, effettua le seguenti sostituzioni:

  • LOCATION: regione in cui si trova il set di dati e in cui viene creato il modello. Ad esempio, us-central1.
  • PROJECT: il tuo ID progetto.
  • TRAININGPIPELINE_DISPLAYNAME: obbligatorio. Un nome visualizzato per trainingPipeline.
  • DATASET_ID: il numero ID del set di dati da utilizzare per l'addestramento.
  • fractionSplit: facoltativo. Una delle tante opzioni di machine learning possibili utilizza le opzioni suddivise per i dati. Per fractionSplit, la somma dei valori deve essere 1. Ad esempio:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: un nome visualizzato per il modello caricato (creato) da TrainingPipeline.
  • MODEL_DESCRIPTION*: una descrizione del modello.
  • modelToUpload.labels*: qualsiasi insieme di coppie chiave-valore per organizzare i tuoi modelli. Ad esempio:
    • "env": "prod"
    • "tier": "backend"
  • EDGE_MODELTYPE: il tipo di modello Edge da addestrare. Le opzioni sono:
    • MOBILE_TF_LOW_LATENCY_1
    • MOBILE_TF_VERSATILE_1
    • MOBILE_TF_HIGH_ACCURACY_1
  • NODE_HOUR_BUDGET: il costo effettivo dell'addestramento sarà uguale o inferiore a questo valore. Per i modelli Edge, il budget deve essere compreso tra 1000 e 100.000 milli ore nodo (incluse).
  • PROJECT_NUMBER: numero del progetto

Metodo HTTP e URL:

POST http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Corpo JSON della richiesta:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": "false",
    "modelType": ["EDGE_MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

arricciare

Salva il corpo della richiesta in un file denominato request.json ed esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Salva il corpo della richiesta in un file denominato request.json ed esegui questo comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La risposta contiene informazioni sulle specifiche e su TRAININGPIPELINE_ID.

Puoi ottenere lo stato del job trainingPipeline utilizzando TRAININGPIPELINE_ID.

Classificazione

In fase di addestramento, puoi scegliere il tipo di modello AutoML Edge che preferisci, a seconda del caso d'uso specifico:

  • bassa latenza (MOBILE_TF_LOW_LATENCY_1)
  • utilizzo per uso generico (MOBILE_TF_VERSATILE_1)
  • qualità della previsione superiore (MOBILE_TF_HIGH_ACCURACY_1)

Seleziona la scheda riportata di seguito per la tua lingua o il tuo ambiente:

REST

Prima di utilizzare qualsiasi dato della richiesta, effettua le seguenti sostituzioni:

  • LOCATION: regione in cui si trova il set di dati e in cui viene creato il modello. Ad esempio, us-central1.
  • PROJECT: il tuo ID progetto.
  • TRAININGPIPELINE_DISPLAYNAME: obbligatorio. Un nome visualizzato per trainingPipeline.
  • DATASET_ID: il numero ID del set di dati da utilizzare per l'addestramento.
  • fractionSplit: facoltativo. Una delle tante opzioni di machine learning possibili utilizza le opzioni suddivise per i dati. Per fractionSplit, la somma dei valori deve essere 1. Ad esempio:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: un nome visualizzato per il modello caricato (creato) da TrainingPipeline.
  • MODEL_DESCRIPTION*: una descrizione del modello.
  • modelToUpload.labels*: qualsiasi insieme di coppie chiave-valore per organizzare i tuoi modelli. Ad esempio:
    • "env": "prod"
    • "tier": "backend"
  • EDGE_MODELTYPE: il tipo di modello Edge da addestrare. Le opzioni sono:
    • MOBILE_TF_LOW_LATENCY_1
    • MOBILE_TF_VERSATILE_1
    • MOBILE_TF_HIGH_ACCURACY_1
  • NODE_HOUR_BUDGET: il costo effettivo dell'addestramento sarà uguale o inferiore a questo valore. Per i modelli Edge, il budget deve essere compreso tra 1000 e 100.000 milli ore nodo (incluse).
  • PROJECT_NUMBER: numero del progetto

Metodo HTTP e URL:

POST http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Corpo JSON della richiesta:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": "true",
    "modelType": ["EDGE_MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

arricciare

Salva il corpo della richiesta in un file denominato request.json ed esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Salva il corpo della richiesta in un file denominato request.json ed esegui questo comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La risposta contiene informazioni sulle specifiche e su TRAININGPIPELINE_ID.

Puoi ottenere lo stato del job trainingPipeline utilizzando TRAININGPIPELINE_ID.

Rilevamento di oggetti

In fase di addestramento, puoi scegliere il tipo di modello AutoML Edge che preferisci, a seconda del caso d'uso specifico:

  • bassa latenza (MOBILE_TF_LOW_LATENCY_1)
  • utilizzo per uso generico (MOBILE_TF_VERSATILE_1)
  • qualità della previsione superiore (MOBILE_TF_HIGH_ACCURACY_1)

Seleziona la scheda riportata di seguito per la tua lingua o il tuo ambiente:

REST

Prima di utilizzare qualsiasi dato della richiesta, effettua le seguenti sostituzioni:

  • LOCATION: regione in cui si trova il set di dati e in cui viene creato il modello. Ad esempio, us-central1.
  • PROJECT: il tuo ID progetto.
  • TRAININGPIPELINE_DISPLAYNAME: obbligatorio. Un nome visualizzato per trainingPipeline.
  • DATASET_ID: il numero ID del set di dati da utilizzare per l'addestramento.
  • fractionSplit: facoltativo. Una delle tante opzioni di machine learning possibili utilizza le opzioni suddivise per i dati. Per fractionSplit, la somma dei valori deve essere 1. Ad esempio:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: un nome visualizzato per il modello caricato (creato) da TrainingPipeline.
  • MODEL_DESCRIPTION*: una descrizione del modello.
  • modelToUpload.labels*: qualsiasi insieme di coppie chiave-valore per organizzare i tuoi modelli. Ad esempio:
    • "env": "prod"
    • "tier": "backend"
  • EDGE_MODELTYPE: il tipo di modello Edge da addestrare. Le opzioni sono:
    • MOBILE_TF_LOW_LATENCY_1
    • MOBILE_TF_VERSATILE_1
    • MOBILE_TF_HIGH_ACCURACY_1
  • NODE_HOUR_BUDGET: il costo effettivo dell'addestramento sarà uguale o inferiore a questo valore. Per i modelli Cloud, il budget deve essere compreso tra 20.000 e 900.000 milli ore nodo (incluse). Il valore predefinito è 216.000,che rappresenta un giorno nel tempo totale di esecuzione, supponendo che vengano utilizzati 9 nodi.
  • PROJECT_NUMBER: numero del progetto

Metodo HTTP e URL:

POST http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Corpo JSON della richiesta:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_object_detection_1.0.0.yaml",
  "trainingTaskInputs": {
    "modelType": ["EDGE_MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

arricciare

Salva il corpo della richiesta in un file denominato request.json ed esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"http://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell